By Topic

The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tickle, A.B. ; Neurocomput. Res. Centre, Queensland Univ. of Technol., Brisbane, Qld., Australia ; Andrews, R. ; Golea, M. ; Diederich, J.

To date, the preponderance of techniques for eliciting the knowledge embedded in trained artificial neural networks (ANN's) has focused primarily on extracting rule-based explanations from feedforward ANN's. The ADT taxonomy for categorizing such techniques was proposed in 1995 to provide a basis for the systematic comparison of the different approaches. This paper shows that not only is this taxonomy applicable to a cross section of current techniques for extracting rules from trained feedforward ANN's but also how the taxonomy can be adapted and extended to embrace a broader range of ANN types (e,g., recurrent neural networks) and explanation structures. In addition we identify some of the key research questions in extracting the knowledge embedded within ANN's including the need for the formulation of a consistent theoretical basis for what has been, until recently, a disparate collection of empirical results

Published in:

Neural Networks, IEEE Transactions on  (Volume:9 ,  Issue: 6 )