By Topic

Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization. II. Practice and experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
P. E. Bagnoli ; Dipt. di Ingegneria dell'Inf. Elettronica Inf. Telecomunicazioni, Pisa Univ., Italy ; C. Casarosa ; E. Dallago ; M. Nardoni

For pt.I see ibid., vol.13, no.6, p.1208-19 (1998). The TRAIT method for thermal characterization of electronic devices, whose theory was exposed in part I for one-dimensional (1-D) structures, was here applied to systems having heat fluxes with three-dimensional (3-D) dependence in order to demonstrate that the spatial resolution of the thermal resistance analysis is still qualitatively maintained in this type of structure too. The analytical procedure was first applied to simulated structures whose temperature transients and steady-state fields were obtained by means of a finite-element thermal simulation program. In these cases, the knowledge of the steady-state temperature distribution allowed identifying the thermal physical domains which correspond to the cells of the calculated equivalent thermal circuit composed by resistances and capacitances. Furthermore, some experiments on real electronic devices with purposely designed assembling structures were exposed and discussed. The samples were power-integrated circuits with plastic packages mounted on various substrates and Schottky diodes in TO-3 packages. The experiments on both simulated and real devices demonstrated that TRAIT analysis, being able to recognize the localization of some induced defects, maintains its spatial resolution character, despite the large distortion of the thermal domains occurring when the defects are close to the heat source

Published in:

IEEE Transactions on Power Electronics  (Volume:13 ,  Issue: 6 )