By Topic

An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gyu Bum Joun ; Dept. of Inf. & Commun. Eng, Woosuk Univ., Jeonbuk, South Korea ; B. H. Cho

A power supply system using a transcutaneous transformer to power an artificial heart through intact skin has been designed and built. In order to realize both high-voltage gain and minimum circulating current, compensation of leakage inductances on both sides of a transcutaneous transformer is proposed. A frequency region which realizes the robustness against coupling coefficient and load variation is identified. In this region, the power converter has inherent advantages such as zero-voltage switching (ZVS) or zero-current switching (ZCS) of the switches, high-voltage gain, minimum circulating current and high efficiency

Published in:

IEEE Transactions on Power Electronics  (Volume:13 ,  Issue: 6 )