By Topic

Calculation of no-load induction motor core losses using the rate-dependent Preisach model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gyselinck, J.J.C. ; Dept. of Electr. Power Eng., Ghent Univ., Belgium ; Dupre, L.R.L. ; Vandevelde, L. ; Melkebeek, J.A.A.

In this paper the authors present a two-step algorithm for predicting the core losses in an electrical machine. As a first step, the flux patterns in the cross section of the machine are calculated by using a time stepped two-dimensional finite element (FE) model, neglecting hysteresis and eddy currents in the laminated core. The second step consists in enforcing the calculated tooth and yoke flux waveforms to a one-dimensional FE lamination model in which the variation along the thickness of the induction and of the induced eddy currents is considered. The hysteretic behavior of the ferromagnetic material is taken into account by, means of a rate-dependent Preisach model. The outlined procedure is applied to a 3 kW squirrel-cage induction motor with either open or closed rotor slots, the former yielding elevated flux harmonics. Computation results and measurements at no-load (phase currents, stator tooth flux, and total iron losses) are compared

Published in:

Magnetics, IEEE Transactions on  (Volume:34 ,  Issue: 6 )