By Topic

Bandit problems and the exploration/exploitation tradeoff

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
W. G. Macready ; Bios Group, Santa Fe, NM, USA ; D. H. Wolpert

We explore the two-armed bandit with Gaussian payoffs as a theoretical model for optimization. The problem is formulated from a Bayesian perspective, and the optimal strategy for both one and two pulls is provided. We present regions of parameter space where a greedy strategy is provably optimal. We also compare the greedy and optimal strategies to one based on a genetic algorithm. In doing so, we correct a previous error in the literature concerning the Gaussian bandit problem and the supposed optimality of genetic algorithms for this problem. Finally, we provide an analytically simple bandit model that is more directly applicable to optimization theory than the traditional bandit problem and determine a near-optimal strategy for that model

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:2 ,  Issue: 1 )