Cart (Loading....) | Create Account
Close category search window
 

Wavelet transform and neural network approach to developing adaptive single-pole auto-reclosing schemes for EHV transmission systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu, I.K. ; Dept. of Electr. Eng. & Electron., Brunel Univ., Uxbridge, UK ; Song, Y.H.

The authors adopt the wavelet transform to detect and identify relevant electrical fault characteristics in power transmission systems. They use several components of wavelet analysis as input features to a forward neural network to distinguish transient, permanent faults and the secondary arc extinction point

Published in:

Power Engineering Review, IEEE  (Volume:18 ,  Issue: 11 )

Date of Publication:

Nov 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.