By Topic

ECG analysis using nonlinear PCA neural networks for ischemia detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Stamkopoulos, T. ; Lab. of Med. Inf., Aristotelian Univ. of Thessaloniki, Greece ; Diamantaras, K. ; Maglaveras, N. ; Strintzis, M.

The detection of ischemic cardiac beats from a patient's electrocardiogram (EGG) signal is based on the characteristics of a specific part of the beat called the ST segment. The correct classification of the beats relies heavily on the efficient and accurate extraction of the ST segment features. An algorithm is developed for this feature extraction based on nonlinear principal component analysis (NLPCA). NLPCA is a method for nonlinear feature extraction that is usually implemented by a multilayer neural network. It has been observed to have better performance, compared with linear principal component analysis (PCA), in complex problems where the relationships between the variables are not linear. In this paper, the NLPCA techniques are used to classify each segment into one of two classes: normal and abnormal (ST+, ST-, or artifact). During the algorithm training phase, only normal patterns are used, and for classification purposes, we use only two nonlinear features for each ST segment. The distribution of these features is modeled using a radial basis function network (RBFN). Test results using the European ST-T database show that using only two nonlinear components and a training set of 1000 normal samples from each file produce a correct classification rate of approximately 80% for the normal beats and higher than 90% for the ischemic beats

Published in:

Signal Processing, IEEE Transactions on  (Volume:46 ,  Issue: 11 )