By Topic

A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering, and classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Feldkamp, L.A. ; Res. Lab., Ford Motor Co., Dearborn, MI, USA ; Puskorius, G.V.

We present a coherent neural net based framework for solving various signal processing problems. It relies on the assertion that time-lagged recurrent networks possess the necessary representational capabilities to act as universal approximators of nonlinear dynamical systems. This applies to system identification, time-series prediction, nonlinear filtering, adaptive filtering, and temporal pattern classification. We address the development of models of nonlinear dynamical systems, in the form of time-lagged recurrent neural nets, which can be used without further training. We employ a weight update procedure based on the extended Kalman filter (EKF). Against the tendency for a net to forget earlier learning as it processes new examples, we develop a technique called multistream training. We demonstrate our framework by applying it to 4 problems. First, we show that a single time-lagged recurrent net can be trained to produce excellent one-time-step predictions for two different time series and also to be robust to severe errors in the input sequence. Second, we model stably a complex system containing significant process noise. The remaining two problems are drawn from real-world automotive applications. One involves input-output modeling of the dynamic behavior of a catalyst-sensor system which is exposed to an operating engine's exhaust stream, the other the real-time and continuous detection of engine misfire

Published in:

Proceedings of the IEEE  (Volume:86 ,  Issue: 11 )