By Topic

A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Smith, G.H. ; Dept. of Electr. & Electron. Eng., Melbourne Univ., Parkville, Vic., Australia ; Novak, D. ; Lim, C.

We propose a full-duplex millimeter-wave fiber-radio network for providing wireless customer access to broadband services. It consists of a hybrid star-tree architecture connecting remote antenna base stations to a central control office (CO) by incorporating wavelength-division multiplexing (WDM) of the optical signals and subcarrier multiplexing (SCM) of the radio signals. These multiplexing schemes allow the sharing of equipment at the CO and therefore enable a simple radio distribution architecture to be implemented. We also demonstrate a 35.5-39.5-GHz full-duplex fiber-radio star-tree network, featuring three WDM carriers in the downstream and a single carrier in the upstream. Each downstream wavelength carries three 155-Mb/s BPSK SCM channels between 35.8-39.3 GHz, while a 37-GHz carrier transports 51.8 Mb/s upstream.

Published in:

Photonics Technology Letters, IEEE  (Volume:10 ,  Issue: 11 )