Cart (Loading....) | Create Account
Close category search window
 

Generation of monocycle-like optical pulses using induced-phase modulation between two-color femtosecond pulses with carrier phase locking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yamashita, M. ; Dept. of Appl. Phys., Hokkaido Univ., Sapporo, Japan ; Sone, H. ; Morita, R. ; Shigekawa, Hidemi

Detailed numerical analysis of monocyclical optical pulse generation using induced-phase modulation between two-color carrier-phase-locked femtosecond pulses is presented. For the generation of a short pulse with a quasi-linear chirped white-continuum spectrum, it is found to be important that the large spectral broadening of each input pulse after fiber propagation is as similar as possible and the total spectral intensity of the synthesized wave at the fiber output is as homogenous as possible. As a result, it is shown that a 2.2-fs 1.3-cycle pulse is generated

Published in:

Quantum Electronics, IEEE Journal of  (Volume:34 ,  Issue: 11 )

Date of Publication:

Nov 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.