By Topic

Viscosity sensor utilizing a piezoelectric thickness shear sandwich resonator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Thalhammer, R. ; Inst. fur Allgemeine Phys., Tech. Univ. Wien, Austria ; Braun, S. ; Devcic-Kuhar, B. ; Groschl, M.
more authors

This paper describes a novel quartz crystal sensor for measurement of the density-viscosity product of Newtonian liquids. The sensor element consists of two piano-convex AT-cut quartz crystals vibrating in a thickness-shear mode with the liquid sample in between. This special set-up allows suppression of disturbing resonances in the liquid layer. Such resonances are generated in the common single-plate arrangements due to compressional waves caused by spurious out-of-plane displacements of the shear vibrating finite plate. The primary measurands of the sensor are the fundamental resonance frequency and the associated resonance Q-value, which are influenced by the viscously entrained liquid contacting the quartz surface. The sensor allows the measurement of samples with viscosities from almost zero (air!) up to 200 cP with a sample volume of 130 /spl mu/l.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:45 ,  Issue: 5 )