By Topic

Surface acoustic wave thermogravimetric measurements of thin polymer films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mileham, R.D. ; Dept. of Electr. Eng., South Dakota State Univ., Brookings, SD, USA ; Sternhagen, J.D. ; Galipeau, D.W.

The increased use of thin film polymers in microelectronic applications has resulted in the need to better understand their chemical, thermal, mechanical, and electrical properties. Of particular interest are changes in mass and viscoelasticity during curing of new high temperature polymers. A highly sensitive technique that can monitor mass and viscoelastic changes in thin polymer films during curing to high temperature is needed. In this work a surface acoustic wave (SAW) based system was developed that was capable of measuring the mass loss due to water outgassing during cure of thin polymer films in a temperature range of 20 to 400/spl deg/C. It also could measure the apparent glass transition temperature of acoustically thin films, and film resonance for acoustically thick films. The principle limitations of the system are the limited accuracy of temperature compensation and the limited ability to separate mass loss effects from viscoelastic effects.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:45 ,  Issue: 5 )