By Topic

Dynamic transaction scheduling and reallocation in overloaded real-time database systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. Hansson ; Dept. of Comput. Sci., Univ. of Skovde, Sweden ; S. H. Son ; J. A. Stankovic ; S. F. Andler

We introduce a novel scheduling architecture with a new algorithm for dynamically resolving transient overloads, that is executed when a new transaction cannot be admitted to the system due to scarce resources. The resolver algorithm generates a cost effective overload resolution plan which, in order to admit the new transaction, finds the required time by de-allocating time among the previously admitted but not yet completed transactions. Considering the cost efficiency of executing the plan and the importance of the new transaction a decision is made whether to execute the plan and admit the new transaction, or to reject it. We consider a multi-class transaction workload consisting of hard critical and firm transactions, where critical transactions have contingency transactions that can be invoked during overloads. We present a performance analysis showing to what degree the overload resolver enforces predictability and ensures the timeliness of critical transactions when handling extreme overload scenarios in real-time database systems

Published in:

Real-Time Computing Systems and Applications, 1998. Proceedings. Fifth International Conference on

Date of Conference:

27-29 Oct 1998