By Topic

Real-time computation of two-dimensional moments on binary images using image block representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
I. M. Spiliotis ; Dept. of Electr. & Comput. Eng., Democritus Univ. of Thrace, Xanthi, Greece ; B. G. Mertzios

This work presents a new approach and an algorithm for binary image representation, which is applied for the fast and efficient computation of moments on binary images. This binary image representation scheme is called image block representation, since it represents the image as a set of nonoverlapping rectangular areas. The main purpose of the image block representation process is to provide an efficient binary image representation rather than the compression of the image. The block represented binary image is well suited for fast implementation of various processing and analysis algorithms in a digital computing machine. The two-dimensional (2-D) statistical moments of the image may be used for image processing and analysis applications. A number of powerful shape analysis methods based on statistical moments have been presented, but they suffer from the drawback of high computational cost. The real-time computation of moments in block represented images is achieved by exploiting the rectangular structure of the blocks

Published in:

IEEE Transactions on Image Processing  (Volume:7 ,  Issue: 11 )