Cart (Loading....) | Create Account
Close category search window

Improving performance of spectral subtraction in speech recognition using a model for additive noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yoma, N.B. ; DECOM, UNICAMP, Sao Paulo, Brazil ; McInnes, F.R. ; Jack, Mervyn A.

Addresses the problem of speech recognition with signals corrupted by additive noise at moderate signal-to-noise ratio (SNR). A model for additive noise is presented and used to compute the uncertainty about the hidden clean signal so as to weight the estimation provided by spectral subtraction. Weighted dynamic time warping (DTW) and Viterbi (HMM) algorithms are tested, and the results show that weighting the information along the signal can substantially increase the performance of spectral subtraction, an easily implemented technique, even with a poor estimation for noise and without using any information about the speaker. It is also shown that the weighting procedure can reduce the error rate when cepstral mean normalization is also used to cancel the convolutional noise

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:6 ,  Issue: 6 )

Date of Publication:

Nov 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.