By Topic

Performance analysis of an improved MMSE multiuser receiver for mismatched delay channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Li-Chung Chu ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA ; Mitra, U.

Motivated by the fact that time delays in a practical direct-sequence code-division multiple-access (DS-CDMA) system can never be perfectly estimated, an improved minimum-mean squared-error (MMSE)-based receiver is proposed and analyzed. Via the simple assumption of a probability distribution for the delay estimation errors, the proposed receiver can achieve a performance superior to that of the conventional MMSE (CMMSE) receiver. The performances of this improved receiver and the CMMSE receiver are compared in terms of the mean squared error (MSE), probability of error, and asymptotic multiuser efficiency (AME). As the original definition of AME does not consider mismatched channels, the behavior of three single-user receivers bearing imperfect delay estimation is also investigated. These single-user receivers are employed to define a more appropriate AME. Finally, an efficient update mechanism to accommodate dynamic channel statistics, and thus practical implementation, is proposed

Published in:

Communications, IEEE Transactions on  (Volume:46 ,  Issue: 10 )