By Topic

Joint design of fixed-rate source codes and multiresolution channel codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. J. Goldsmith ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA ; M. Effros

We propose three new design algorithms for jointly optimizing source and channel codes. Our optimality criterion is to minimize the average end-to-end distortion. For a given channel SNR and transmission rate, our joint source and channel code designs achieve an optimal allocation of bits between the source and channel coders. Our three techniques include a source-optimized channel code, a channel-optimized source code, and an iterative descent technique combining the design strategies of the other two codes. The joint designs use channel-optimized vector quantization (COVQ) for the source code and rate compatible punctured convolutional (RCPC) coding for the channel code. The optimal bit allocation reduces distortion by up to 6 dB over suboptimal allocations and by up to 4 dB relative to standard COVQ for the source data set considered. We find that all three code designs have roughly the same performance when their bit allocations are optimized. This result follows from the fact that at the optimal bit allocation the channel code removes most of the channel errors, in which case the three design techniques are roughly equivalent. We also compare the robustness of the three techniques to channel mismatch. We conclude the paper by relaxing the fixed transmission rate constraint and jointly optimizing the transmission rate, source code, and channel code

Published in:

IEEE Transactions on Communications  (Volume:46 ,  Issue: 10 )