By Topic

UTD analysis of a shaped subreflector in a dual offset-reflector antenna system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kyutae Lim ; Digital Commun. Lab., Samsung Adv. Inst. of Technol., Suwon, South Korea ; Hwang Ryu ; Sangseol Lee ; Jaehoon Choi

The geometrical theory of diffraction (GTD) is known as an efficient high-frequency method for the analysis of electrically large objects such as a reflector antenna. However it is difficult to obtain geometrical parameters in order to apply GTD to an arbitrary shaped reflector, especially a subreflector. The geometrical parameters of an arbitrary shaped subreflector for the uniform theory of diffraction (UTD) analysis are derived based on differential geometry. The radiation patterns of various subreflector types, including hyperboloidal and a shaped subreflector, are evaluated by UTD. The computed result for the hyperboloidal reflector agrees well with that obtained by uniform asymptotic theory (UAT)

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:46 ,  Issue: 10 )