By Topic

A comparative analysis of the dynamic behavior of BTG/SOI MOSFETs and circuits with distributed body resistance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Workman, G.O. ; Dept. of Electr. & Comput. Eng., Florida Univ., Gainesville, FL, USA ; Fossum, J.G.

To examine the dynamic nature of body-tied-to-gate (BTG) partially depleted SOI MOSFETs, CMOS inverter circuits (nine-stage ring oscillators and 50-stage chains) are simulated with SOISPICE, accounting for the BTG distributed body resistance. Due to the physical nature of the UFSOI model in SOISPICE, both the static and dynamic characteristics of the BTG device, contrasted to floating-body (FB) and body-tied-to-source (BTS) SOI MOSFETs, are faithfully revealed. Results give insight on previously measured, yet inadequately explained, dynamic behavior of the BTG device. Further, problematic hysteretic behavior associated with the dynamic operation of the device with realistic body sheet resistance is described, suggesting design constraints on the maximum device width. Finally, a performance assessment of the BTG device configuration in ultra-low-power CMOS digital applications is offered and compared with FB and BTS, indicating that the optimal configuration is in fact application-specific

Published in:

Electron Devices, IEEE Transactions on  (Volume:45 ,  Issue: 10 )