By Topic

Model-based covariance mean variance classification techniques: algorithm development and application to the acoustic classification of zooplankton

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

For inversion problems in which the theoretical relationship between observed data and model parameters is well characterized, a promising approach to the classification problem is the application of techniques that capitalize on the predictive power of class-specific models. Theoretical models have been developed for three zooplankton scattering classes (hard elastic-shelled, e.g., pteropods; fluid-like, e.g., euphausiids; and gas-bearing, e.g., siphonophores), providing a sound basis for model-based classification approaches. The covariance mean variance classification (CMVC) techniques classify broad-band echoes from individual zooplankton based on comparisons of observed echo spectra to model space realizations. Three different CMVC algorithms were developed: the integrated score classifier, the pairwise score classifier, and the Bayesian probability classifier; these classifiers assign observations to a class based on similarities in covariance, mean, and variance while accounting for model spare ambiguity and validity. The CMVC techniques were applied to broad-band (~350-750 kHz) echoes acquired from 24 different zooplankton to invert for scatterer class and properties. All three classification algorithms had a high rate of success with high-quality high SNR data. Accurate acoustic classification of zooplankton species has the potential to significantly improve estimates of zooplankton biomass made from ocean acoustic backscatter measurements

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:23 ,  Issue: 4 )