By Topic

Adaptive detection schemes in compound-Gaussian clutter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Conte, Ernesto ; Naples Univ., Italy ; Lops, M. ; Ricci, G.

Radar detection of coherent pulse trains embedded in compound-Gaussian disturbance with partially known statistics is discussed. We first give a thorough derivation of two recently proposed adaptive detection structures. Next, we derive a different detection scheme exploiting the assumption that the clutter is wide-sense stationary. Resorting to the theory of circulant matrices, in fact, we demonstrate that the estimation of the structure of the clutter covariance matrix can be reduced to the estimation of its eigenvalues, which in turn can be (efficiently) done via fast Fourier transform codes. After a thorough performance assessment, mostly carried on via computer simulations, the results show that the newly proposed detector achieves better performance than the two previously introduced adaptive detectors. Moreover, a sensitivity analysis shows that, even though this detector does not strictly guarantee the constant false alarm rate property with respect to the clutter covariance matrix, it is robust, in the sense that its performance is only slightly affected by variations in the clutter temporal correlation

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:34 ,  Issue: 4 )