By Topic

The “packing” and the “scheduling packet” switch architectures for almost all-optical lossless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Varvarigos, E. ; Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA

This paper proposes two almost all-optical packet switch architectures, called the “packing switch” and the “scheduling switch” architecture, which when combined with appropriate wait-for-reservation or tell-and-go connection and how control protocols provide lossless communication for traffic that satisfies certain smoothness properties. Both switch architectures preserve the order of packets that use a given input-output pair, and are consistent with virtual circuit switching, The scheduling switch requires 2klogT+k2 two-state elementary switches (or 2klogT+2klogk elementary switches, if a different version is used) where k is the number of inputs and T is a parameter that measures the allowed burstiness of the traffic. The packing switch requires very little processing of the packet header, and uses k2logT+klogk two-state switches. We also examine the suitability of the proposed architectures for the design of circuit switched networks. We find that the scheduling switch combines low hardware cost with little processing requirements at the nodes, and is an attractive architecture for both packet-switched and circuit-switched high-speed networks

Published in:

Lightwave Technology, Journal of  (Volume:16 ,  Issue: 10 )