By Topic

On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Y. A. Tolias ; Signal Process. & Biomed. Technol. Unit, Aristotelian Univ. of Thessaloniki, Greece ; S. M. Panas

A novel approach for enhancing the results of fuzzy clustering by imposing spatial constraints for solving image segmentation problems is presented. We have developed a Sugeno (185) type rule-based system with three inputs and 11 rules that interacts with the clustering results obtained by the well-known fuzzy c-means (FCM) and/or possibilistic c-means (PCM) algorithms. It provides good image segmentations in terms of region smoothness and elimination of the effects of noise. The results of the proposed rule-based neighborhood enhancement (RB-NE) system are compared to well-known segmentation algorithms using stochastic field modeling. They are found to be of comparable quality, while being of lower computational complexity.

Published in:

IEEE Signal Processing Letters  (Volume:5 ,  Issue: 10 )