By Topic

The art of signaling: fifty years of coding theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Calderbank, A.R. ; Inf. Sci. Res. Center, AT&T Labs., Florham Park, NJ, USA

In 1948 Shannon developed fundamental limits on the efficiency of communication over noisy channels. The coding theorem asserts that there are block codes with code rates arbitrarily close to channel capacity and probabilities of error arbitrarily close to zero. Fifty years later, codes for the Gaussian channel have been discovered that come close to these fundamental limits. There is now a substantial algebraic theory of error-correcting codes with as many connections to mathematics as to engineering practice, and the last 20 years have seen the construction of algebraic-geometry codes that can be encoded and decoded in polynomial time, and that beat the Gilbert-Varshamov bound. Given the size of coding theory as a subject, this review is of necessity a personal perspective, and the focus is reliable communication, and not source coding or cryptography. The emphasis is on connecting coding theories for Hamming and Euclidean space and on future challenges, specifically in data networking, wireless communication, and quantum information theory

Published in:

Information Theory, IEEE Transactions on  (Volume:44 ,  Issue: 6 )