By Topic

Detection of stochastic processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kailath, T. ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; Poor, H.V.

This paper reviews two streams of development, from the 1940's to the present, in signal detection theory: the structure of the likelihood ratio for detecting signals in noise and the role of dynamic optimization in detection problems involving either very large signal sets or the joint optimization of observation time and performance. This treatment deals exclusively with basic results developed for the situation in which the observations are modeled as continuous-time stochastic processes. The mathematics and intuition behind such developments as the matched filter, the RAKE receiver, the estimator-correlator, maximum-likelihood sequence detectors, multiuser detectors, sequential probability ratio tests, and cumulative-sum quickest detectors, are described

Published in:

Information Theory, IEEE Transactions on  (Volume:44 ,  Issue: 6 )