By Topic

On the role of pattern matching in information theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, the role of pattern matching in information theory is motivated and discussed. We describe the relationship between a pattern's recurrence time and its probability under the data-generating stochastic source. We show how this relationship has led to great advances in universal data compression. We then describe nonasymptotic uniform bounds on the performance of data-compression algorithms in cases where the size of the training data that is available to the encoder is not large enough so as to yield the asymptotic compression: the Shannon entropy. We then discuss applications of pattern matching and universal compression to universal prediction, classification, and entropy estimation

Published in:

Information Theory, IEEE Transactions on  (Volume:44 ,  Issue: 6 )