By Topic

Noncomplementary BiCMOS logic and CMOS logic for low-voltage, low-power operation-a comparative study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Margala, M. ; Dept. of Electr. & Comput. Eng., Alberta Univ., Edmonton, Alta., Canada ; Durdle, N.G.

This paper presents results of a comprehensive comparative study of six bipolar complementary metal-oxide-semiconductor (BiCMOS) noncomplementary logic design styles and two CMOS logic styles for low-voltage, low-power operation. These logic styles have been compared for switching power consumption and power efficiency (power-delay product). The examination offers two alternative approaches never used in other comparative studies. First, all BiCMOS-based styles are compared to low-power CMOS styles as opposed to a single conventional static CMOS style. Second, a low-power methodology has been used as opposed to performance methodology referred to in the previous logic comparisons. The styles examined are bootstrapped BiCMOS, bootstrapped full-swing BiCMOS, bootstrapped bipolar CMOS, Seng-Rofail's bootstrapped BiCMOS, modified full-swing BiCMOS, dynamic full-swing BiCMOS, double pass-transistor CMOS, and inverter-based CMOS. These design styles have been compared at various power supply voltages (0.9-3 V), with various output load capacitances (0.1-1 pF) at the frequency 50 MHz and temperature 27°C. The results clearly show which logic style is the most beneficial for which specific conditions

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:33 ,  Issue: 10 )