Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Fuzzy-tuning current-vector control of a three-phase PWM inverter for high-performance AC drives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ying-Yu Tzou ; Dept. of Electr. & Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Shiu-Yung Lin

This paper proposes a new discrete fuzzy-tuning current-vector control (FTC) scheme for three-phase pulsewidth modulation (PWM) inverters. The proposed current control scheme can achieve fast transient responses and, at the same time, have very low total harmonic distortion in output current during steady-state operation. The proposed FTC scheme generates quasi-optimum PWM patterns by using a closed-loop control technique with instantaneous current feedback. The proposed FTC scheme has been realized using a single-chip digital signal processor (TMS320C14) from Texas Instruments. Experimental results are given to verify the proposed fuzzy-tuning current control strategy for three-phase PWM inverters

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:45 ,  Issue: 5 )