By Topic

Hazard-free implementation of speed-independent circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

This paper develops a theoretical framework for the hazard-free gate-level implementation of speed-independent circuits specified by event-based models, such as signal transition graphs (for processes with AND causality and input choice) or their extension, called change diagrams (which allow OR-causality). It presents sufficient conditions, called the generalized monotonous cover requirements, for a hazard-free circuit to be built within a standard implementation structure. This structure consists of two-level simple-gate combinational logic and a row of latches, either a C-element or an RS-latch. A set of semantic-preserving transformations is defined that can be applied to an original behavioral description of the circuit so as to produce its specification in the form that satisfies the monotonous cover requirement. The transformations are applied at the event-based representation level (to avoid state explosion) and proved to be effective. The main result of the paper is therefore twofold: 1) the proof that any speed-independent behavior can be implemented at the gate level without hazards and 2) an efficient method for constructing such an implementation. Experimental results show that the proposed method compares very favorably, in area and performance, to the previously known techniques

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:17 ,  Issue: 9 )