By Topic

High-density micromachined polygon optical crossconnects exploiting network connection-symmetry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lin, L.Y. ; AT&T Bell Labs., Red Bank, NJ, USA ; Goldstein, E.L. ; Simmons, J.M. ; Tkach, R.W.

Optical-layer crossconnects with high port count appear to be emerging as key elements for provisioning and restoration in future wavelength-division-multiplexed networks. We demonstrate here a means of achieving high-density optical crossconnects utilizing free-space micromachined optical switches that exploit connection-symmetry in core-transport networks. The micromachined polygon switches proposed here are strictly nonblocking. Measured insertion losses of 3.1-3.5 dB for a 16/spl times/16 (8/spl times/8 bidirectional) switch suggest the promise of scaling to large port count.

Published in:

Photonics Technology Letters, IEEE  (Volume:10 ,  Issue: 10 )