By Topic

Blind signal separation: statistical principles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Cardoso, J.-F. ; CNRS, Paris, France

Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis that aim to recover unobserved signals or “sources” from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mutual independence between the signals. The weakness of the assumptions makes it a powerful approach, but it requires us to venture beyond familiar second order statistics, The objectives of this paper are to review some of the approaches that have been developed to address this problem, to illustrate how they stem from basic principles, and to show how they relate to each other

Published in:

Proceedings of the IEEE  (Volume:86 ,  Issue: 10 )