Cart (Loading....) | Create Account
Close category search window

The effect of hydrogen on trap generation, positive charge trapping, and time-dependent dielectric breakdown of gate oxides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nissan-Cohen, Y. ; General Electric Co., Schenectady, NY, USA ; Gorczyca, T.

The effect of high-temperature ( approximately=900 degrees C) hydrogen on the gate oxides of MOS devices is studied. Hydrogen is introduced into devices by either high-temperature anneal or conventional process steps such as low-pressure chemical vapor deposition (LPCVD) of Si/sub 3/N/sub 4/. In all cases, measurements of high-field stress behavior show that high-temperature hydrogen steps reduce time to breakdown and increase bulk and interface trap generation, but do not affect the generation of positive charge. These results indicate that the wear-out mechanism of gate oxides at high fields is related to trap generation rather than to accumulation of positive charge.<>

Published in:

Electron Device Letters, IEEE  (Volume:9 ,  Issue: 6 )

Date of Publication:

June 1988

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.