By Topic

A model for altimeter returns from penetrable geophysical media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Adams, R.J. ; Bradley Dept. of Electr. Eng., Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA ; Brown, G.S.

The radar altimeter is a well-understood instrument for monitoring the world's oceans. There has been a recent effort to extend altimeter techniques to the study of the world's ice sheets. To this end, several authors have developed average altimeter waveform models that incorporate pulse-penetration effects to varying degrees. In this paper, the authors extend these models to more adequately account for the effects of surface roughness and subsurface inhomogeneities on the average scattered waveform. This leads to a waveform model that is useful in analyzing altimeter returns obtained over a wider range of geophysical media, such as snow, ice, and foliage, which are characterized by strong subsurface inhomogeneities. Representative results of applying this extended model to airborne altimeter measurements made over various regions of the Greenland ice sheet in September 1991 are provided

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:36 ,  Issue: 5 )