Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Physical limits of hyperthermia using magnetite fine particles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Hergt, R. ; Inst. fur Phys. Hochtechnol. e.V., Jena, Germany ; Andra, W. ; d'Ambly, C.G. ; Hilger, I.
more authors

Structural and magnetic properties of fine particles of magnetite are investigated with respect to the application for hyperthermia. Magnetic hysteresis losses are measured in dependence on the field amplitude for selected commercial powders and are discussed in terms of grain size and structure of the particles. For ferromagnetic powders as well as for ferrofluids, results of heating experiments within organic gels in a magnetic high frequency field are reported. The heating effect depends strongly on the magnetic properties of the magnetite particles which may vary appreciably for different samples in dependence on the particle size and microstructure. In particular, the transition from ferromagnetic to superparamagnetic behavior causes changes of the loss mechanism, and accordingly, of the heating effect. The maximum attainable heating effect is discussed in terms of common theoretical models. Rise of temperature at the surface of a small heated sample as well as in its immediate neighborhood in the surrounding medium is measured in dependence on time and is compared with solutions of the corresponding heat conductivity problem. Conclusions with respect to clinical applications are given

Published in:

Magnetics, IEEE Transactions on  (Volume:34 ,  Issue: 5 )