Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Recursive estimation of images using non-Gaussian autoregressive models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Kadaba, S.R. ; Dept. of Wireless Syst. Core Technol., Lucent Technol., Whippany, NJ, USA ; Gelfand, S.B. ; Kashyap, R.

We consider recursive estimation of images modeled by non-Gaussian autoregressive (AR) models and corrupted by spatially white Gaussian noise. The goal is to find a recursive algorithm to compute a near minimum mean square error (MMSE) estimate of each pixel of the scene using a fixed lookahead of D rows and D columns of the observations. Our method is based on a simple approximation that makes possible the development of a useful suboptimal nonlinear estimator. The algorithm is first developed for a non-Gaussian AR time-series and then generalized to two dimensions. In the process, we draw on the well-known reduced update Kalman filter (KF) technique of Woods and Radewan (1977) to circumvent computational load problems. Several examples demonstrate the non-Gaussian nature of residuals for AR image models and that our algorithm compares favorably with the Kalman filtering techniques in such cases

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 10 )