Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Extraction of signatures from check background based on a filiformity criterion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Djeziri, S. ; Dept. de Math. et d''Inf., Quebec Univ., Trois-Rivieres, Que., Canada ; Nouboud, F. ; Plamondon, R.

Extracting a signature from a check with a patterned background is a thorny problem in image segmentation. Methods based on threshold techniques often necessitate meticulous postprocessing in order to correctly capture the handwritten information. In this study, we tackle the problem of extracting handwritten information by means of an intuitive approach that is close to human visual perception, defining a topological criterion specific to handwritten lines which we call filiformity. This approach was inspired by the existence in the human eye of cells whose specialized task is the extraction of lines. First, we define two topological measures of filiformity for binary objects. Next, we extend these measures to include gray-level images. One of these measures, which is particularly interesting, differentiates the contour lines of objects from the handwritten lines we are trying to isolate. The local value provided by this measure is then processed by global thresholding, taking into account information about the whole image. This processing step ends with a simple fast algorithm. Evaluation of the extraction algorithm carried out on 540 checks with 16 different background patterns demonstrates the robustness of the algorithm, particularly when the background depicts a scene

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 10 )