Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Skeleton-based morphological coding of binary images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kresch, R. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; Malah, D.

This paper presents new properties of the discrete morphological skeleton representation of binary images, along with a novel coding scheme for lossless binary image compression that is based on these properties. Following a short review of the theoretical background, two sets of new properties of the discrete morphological skeleton representation of binary images are proved. The first one leads to the conclusion that only the radii of skeleton points belonging to a subset of the ultimate erosions are needed for perfect reconstruction. This corresponds to a lossless sampling of the quench function. The second set of new properties is related to deterministic prediction of skeletonal information in a progressive transmission scheme. Based on the new properties, a novel coding scheme for binary images is presented. The proposed scheme is suitable for progressive transmission and fast implementation. Computer simulations, also presented, show that the proposed coding scheme substantially improves the results obtained by previous skeleton-based coders, and performs better than classical coders, including run-length/Huffman, quadtree, and chain coders. For facsimile images, its performance can be placed between the modified read (MR) method (K=4) and modified modified read (MMR) method

Published in:

Image Processing, IEEE Transactions on  (Volume:7 ,  Issue: 10 )