By Topic

Fast flaw reconstruction from 3D eddy current data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Z. Badics ; Ansoft Corp., Pittsburgh, PA, USA ; J. Pavo ; H. Komatsu ; S. Kojima
more authors

An eddy current flaw reconstruction strategy based on the minimization of nonlinear least-squares error functionals is developed for problems with arbitrary specimen, probe and defect shapes. A fast 3D forward solver is created to rapidly predict eddy current signals in the inversion shell. The high speed of the signal evaluation comes by utilizing a reaction data set constructed before performing the inversion by a finite element electromagnetic field simulator. The same pre-calculated reaction data set supports the quick evaluation of sensitivity information, thereby ensuring the efficient implementation of an optimization algorithm. This optimization algorithm combines first-order and stochastic optimization strategies and improves the reliability of the reconstruction significantly if the observed data contain large noise components. Examples with tube specimens are presented for different 3D flaw shapes

Published in:

IEEE Transactions on Magnetics  (Volume:34 ,  Issue: 5 )