By Topic

A hybrid neural network system for the rainfall estimation using satellite imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Hybrid neural networks composed of a self-organizing map (SOM) and three-layered feedforward neural networks have been developed and applied for rainfall estimation using satellite imagery. The SOM classifies an input vector extracted from satellite imagery, then one of the feedforward neural networks is chosen according to the class to give the rainfall estimation. In order to train the hybrid neural network, adjoining seas of Japan were selected as testing area. Hourly GMS infrared imagery data and simultaneous ground truth data (the area average of rainfall observations and radar/raingage composite data) were collected from AIP/l2 data sets. The SOM is trained to classify the textural feature vectors extracted from the imagery data, and tuned by learning vector quantization method. The feedforward neural networks are trained to give the estimation by back propagation algorithm. Fairly good correlation coefficients about 0.8 are obtained between the estimation and corresponding ground truth for the unlearned test set. Furthermore, SOM with a recurrent structure for processing the temporal information has been proposed and tested.

Published in:

Neural Networks, 1993. IJCNN '93-Nagoya. Proceedings of 1993 International Joint Conference on  (Volume:2 )

Date of Conference:

25-29 Oct. 1993