By Topic

Reliable tracking of facial features in semantic-based video coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Antoszczyszyn, P.M. ; Dept. of Electr. Eng., Edinburgh Univ., UK ; Hannah, J.M. ; Grant, P.M.

A new method of tracking the position of important facial features for semantic-based moving image coding is presented. Reliable and fast tracking of the facial features in head-and-shoulders scenes is of paramount importance for reconstruction of the speakers motion in videophone systems. The proposed method is based on eigenvalue decomposition of the sub-images extracted from subsequent frames of the video sequence. The motion of each facial feature (the left eye, the right eye, the nose and the lips) is tracked separately; this means that the algorithm can be easily adapted for a parallel machine. No restrictions, other than the presence of the speaker's face, were imposed on the actual contents of the scene. The algorithm was tested on numerous widely used head-and-shoulders video sequences containing moderate head pan, rotation and zoom, with remarkably good results. Tracking was maintained even when the facial features were occluded. The algorithm can also be used in other semantic-based systems

Published in:

Vision, Image and Signal Processing, IEE Proceedings -  (Volume:145 ,  Issue: 4 )