Cart (Loading....) | Create Account
Close category search window

A measurement method based on the wavelet transform for power quality analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Angrisani, L. ; Dipt. di Ing. dell''Inf. ed Ing. Elettrica, Salerno Univ., Italy ; Daponte, P. ; D'Apuzzo, M. ; Testa, A.

The paper presents a measurement method for power quality analysis in electrical power systems. The method is the evolution of an iterative procedure already set up by the authors and allows the most relevant disturbances in electrical power systems to be detected, localized and estimated automatically. The detection of the disturbance and its duration are attained by a proper application, on the sampled signal, of the continuous wavelet transform (CWT). Disturbance amplitude is estimated by decomposing, in an optimized way, the signal in frequency subbands by means of the discrete time wavelet transform (DTWT). The proposed method is characterized by high rejection to noise, introduced by both measurement chain and system under test, and it is designed for an agile disturbance classification. Moreover, it is also conceived for future implementation both in a real-time measurement equipment and in an off-line analysis tool. In the paper firstly the theoretical background is reported and briefly discussed. Then, the proposed method is described in detail. Finally, some case-studies are examined in order to highlight the performance of the method

Published in:

Power Delivery, IEEE Transactions on  (Volume:13 ,  Issue: 4 )

Date of Publication:

Oct 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.