By Topic

Making GaAs integrated circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
C. G. Kirkpatrick ; Sci. Appl. Int. Corp., Thousand Oaks, CA, USA

Digital gallium arsenide (GaAs) integrated circuits offer prospects for high-performance electronics, particularly for increased speed and radiation hardness. Prototype GaAs devices fabricated in technologies ranging from ion-implanted metal semiconductor field-effect transistors (MESFETs) and junction field-effect transistors (JFETs) to epitaxial heterostructures, such as high-electron-mobility transistors (HEMTs) and heterojunction bipolar transistors (HBTs), have demonstrated these advantages. While these GaAs technologies share many common fabrication features, the unique characteristics of each and GaAs materials present significant manufacturing challenges. It is argues that to produce real integrated circuits (ICs) for system applications, the disciplines and rigors of a production environment as well as the innovations of research and development are required

Published in:

Proceedings of the IEEE  (Volume:76 ,  Issue: 7 )