By Topic

Reducing “Structure from Motion”: a general framework for dynamic vision. 2. Implementation and experimental assessment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Soatto, S. ; Dept. of Electr. Eng., Washington Univ., St. Louis, MO, USA ; Perona, P.

For pt.1 see ibid., p.933-42 (1998). A number of methods have been proposed in the literature for estimating scene-structure and ego-motion from a sequence of images using dynamical models. Despite the fact that all methods may be derived from a “natural” dynamical model within a unified framework, from an engineering perspective there are a number of trade-offs that lead to different strategies depending upon the applications and the goals one is targeting. We want to characterize and compare the properties of each model such that the engineer may choose the one best suited to the specific application. We analyze the properties of filters derived from each dynamical model under a variety of experimental conditions, assess the accuracy of the estimates, their robustness to measurement noise, sensitivity to initial conditions and visual angle, effects of the bas-relief ambiguity and occlusions, dependence upon the number of image measurements and their sampling rate

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:20 ,  Issue: 9 )