By Topic

Realizing common communication patterns in partitioned optical passive stars (POPS) networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gravenstreter, G. ; Software Eng. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Melhem, R.G.

We consider the problem of realizing several common communication structures in the all-optical Partitioned Optical Passive Stars (POPS) topology. We show that, often, the obvious or “natural” method of implementing a communication pattern in the POPS does not efficiently utilize its communication capabilities. We present techniques which distribute the communication load uniformly in the POPS for four of the most common communication patterns (all-to-all personalized, global reduction operations, ring, and torus). We prove that these techniques provide optimal performance in the sense that they minimize the time required to deliver the messages from each node to its neighbors

Published in:

Computers, IEEE Transactions on  (Volume:47 ,  Issue: 9 )