By Topic

A real-time AGV-scheduling system that combines human decision-making with integer-programming algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. E. Krebs ; Sch. of Ind. & Syst. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; L. K. Platzman ; C. M. Mitchell

A description is given of the interaction of a human operator and an automated transportation system within a cell of an FMS. The interaction of a human operator with operations-research-based scheduling algorithms is the research focus. The human role in management of the cell transportation system consists of monitoring the status of parts requiring transportation and, when necessary, interacting with the automated scheduling system to affect the produced schedules in such a way that compensation is made for late parts. Specific operator interaction methods are proposed. Experiments to test the detailed supervisory control philosophy are then discussed

Published in:

Systems, Man and Cybernetics, 1989. Conference Proceedings., IEEE International Conference on

Date of Conference:

14-17 Nov 1989