Cart (Loading....) | Create Account
Close category search window
 

Fuzzy lattice neural network (FLNN): a hybrid model for learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Petridis, V. ; Dept. of Electr. & Comput. Eng., Aristotelian Univ. of Thessaloniki, Greece ; Kaburlasos, V.G.

This paper proposes two hierarchical schemes for learning, one for clustering and the other for classification problems. Both schemes can be implemented on a fuzzy lattice neural network (FLNN) architecture, to be introduced herein. The corresponding two learning models draw on adaptive resonance theory (ART) and min-max neurocomputing principles but their application domain is a mathematical lattice. Therefore they can handle more general types of data in addition to N-dimensional vectors. The FLNN neural model stems from a cross-fertilization of lattice theory and fuzzy set theory. Hence a novel theoretical foundation is introduced in this paper, that is the framework of fuzzy lattices or FL-framework, based on the concepts fuzzy lattice and inclusion measure. Sufficient conditions for the existence of an inclusion measure in a mathematical lattice are shown. The performance of the two FLNN schemes, that is for clustering and for classification, compares quite well with other methods and it is demonstrated by examples on various data sets including several benchmark data sets

Published in:

Neural Networks, IEEE Transactions on  (Volume:9 ,  Issue: 5 )

Date of Publication:

Sep 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.