By Topic

A hybrid neural-genetic multimodel parameter estimation algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
V. Petridis ; Dept. of Electr. & Comput. Eng., Aristotelian Univ. of Thessaloniki, Greece ; E. Paterakis ; A. Kehagias

We introduce a hybrid neural-genetic multimodel parameter estimation algorithm. The algorithm is applied to structured system identification of nonlinear dynamical systems. The main components of the algorithm are: 1) a recurrent incremental credit assignment neural network which computes a credit function for each member of a generation of models; and 2) a genetic algorithm which uses the credit functions as selection probabilities for producing new generations of models. The neural network and genetic algorithm combination is applied to the task of finding the parameter values which minimize the total square output error: the credit function reflects the closeness of each model's output to the true system output and the genetic algorithm searches the parameter space by a divide-and-conquer technique. The algorithm is evaluated by numerical simulations of parameter estimation for a planar robotic manipulator and a waste water treatment plant

Published in:

IEEE Transactions on Neural Networks  (Volume:9 ,  Issue: 5 )