Cart (Loading....) | Create Account
Close category search window

A general framework for adaptive processing of data structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Frasconi, P. ; Dipt. di Sistemi e Inf., Univ. di Firenza, Italy ; Gori, M. ; Sperduti, A.

A structured organization of information is typically required by symbolic processing. On the other hand, most connectionist models assume that data are organized according to relatively poor structures, like arrays or sequences. The framework described in this paper is an attempt to unify adaptive models like artificial neural nets and belief nets for the problem of processing structured information. In particular, relations between data variables are expressed by directed acyclic graphs, where both numerical and categorical values coexist. The general framework proposed in this paper can be regarded as an extension of both recurrent neural networks and hidden Markov models to the case of acyclic graphs. In particular we study the supervised learning problem as the problem of learning transductions from an input structured space to an output structured space, where transductions are assumed to admit a recursive hidden state-space representation. We introduce a graphical formalism for representing this class of adaptive transductions by means of recursive networks, i.e., cyclic graphs where nodes are labeled by variables and edges are labeled by generalized delay elements. This representation makes it possible to incorporate the symbolic and subsymbolic nature of data. Structures are processed by unfolding the recursive network into an acyclic graph called encoding network. In so doing, inference and learning algorithms can be easily inherited from the corresponding algorithms for artificial neural networks or probabilistic graphical model

Published in:

Neural Networks, IEEE Transactions on  (Volume:9 ,  Issue: 5 )

Date of Publication:

Sep 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.