By Topic

A robust numerical solution to reconstruct a globally relative shear modulus distribution from strain measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sumi, Chikayoshi ; Dept. of Electr. & Electron. Eng., Sophia Univ., Tokyo, Japan ; Nakayama, Kiyoshi

To noninvasively quantify tissue elasticity for differentiating malignancy of soft tissue, the authors previously proposed a two-dimensional (2-D) mechanical inverse problem in which simultaneous partial differential equations (PDE's) represented the target distribution globally of relative shear moduli with respect to reference shear moduli such that the relative values could be determined from strain distributions obtained by conventional ultrasound (US) or nuclear magnetic resonance (NMR) imaging-based analysis. Here, the authors further consider the analytic solution in the region of interest, subsequently demonstrating that the problem is inevitably ill-conditioned in real-world applications, i.e., noise in measurement data and improper configurations of mechanical sources/reference regions make it impossible to guarantee the existence of a stable and unique target global distribution. Next, based on clarification of the inherent problematic conditions, the authors describe a newly developed numerical-based implicit-integration approach that novelly incorporates a computationally efficient regularization method designed to solve this differential inverse problem using just low-pass filtered spectra derived from strain measurements. To evaluate method effectiveness, reconstructions of the global distribution are carried out using intentionally created ill-conditioned models. The resultant reconstructions indicate the robust solution is highly suitable, while also showing it has high potential to be applied in the development of an effective yet versatile diagnostic tool for quantifying the distribution of elasticity in various soft tissues.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:17 ,  Issue: 3 )