By Topic

Reversible decorrelation method for progressive transmission of 3-D medical image

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yong-Sung Kim ; Lab. of Image Eng., Hanyang Univ., Seoul, South Korea ; Whoi-Yul Kim

In this paper, the authors present a new reversible decorrelation method of three-dimensional (3-D) medical images for progressive transmission. Progressive transmission of an image permits gradual improvement of image quality while being displayed. When the amount of image data is very large, as a 3-D medical image, the progressive transmission plays an important role in viewing or browsing the image. The data structure presented in this paper takes account of interframe correlation as well as intraframe correlation of the 3-D image. This type of data structure has been termed the 3-D hierarchy embedded differential image (3-D-HEDI) as was derived from the earlier HEDI structure (Kim et al., 1995). Experiments were conducted to verify the performance of 3-D HEDI in terms of the decorrelation efficiency as well as the progressive transmission efficiency. It is compared with those of conventional hierarchy interpolation (HINT), two-dimensional (2-D) HEDI and differential pulse code modulation (DPCM). Experimental results indicate that 3-D HEDI outperforms HINT, 2-D HEDI and DPCM in both decorrelation efficiency as well as the progressive transmission efficiency on 3-D medical images.

Published in:

IEEE Transactions on Medical Imaging  (Volume:17 ,  Issue: 3 )